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Abstract 

This paper presents a diagnostic module developed by IFP and tested off-line on a FCC (Fluid Catalytic 
Cracking) pilot plant. The method uses four successive complementary techniques. They enable to go step by 
step from the observations to a sentence in natural language describing the faults. First, a quantitative causal 
model is elaborated from a quantitative behavioural model. Causality is obtained from the structure of each 
equation. Then, global and local alarms are generated using residuals (differences between measures and outputs 
of the model) and fuzzy logic reasoning. Then, a hitting set algorithm is applied to determine sets of components 
or equipment which are suspected to have an abnormal behaviour. Finally, expert human operator knowledge 
about those components is used to identify the fault(s) and produce messages for the operators. This software is 
currently tested off-line on the FCC pilot plant at IFP. The performance of the diagnostic module is illustrated on 
four practical scenarios of abnormal behaviour. This work is conducted as part of the CHEM EC funding project. 

Résumé 

Ce papier présente le système de diagnostic ASCO (Aide à la Supervision et à la Conduite des Opérateurs) 
développé par l'IFP et testé hors ligne sur un pilote de FCC (Fluid Catalytic Cracking). Il fait successivement 
appel à quatre modules complémentaires. Ils permettent à partir d'un ensemble d'informations de fournir aux 
opérateurs un message indiquant la panne et ses conséquences. Le premier module permet de générer un modèle 
causal quantitatif de bon fonctionnement du procédé. Le second module effectue la détection de défauts : il 
génère des alarmes à partir des observations. Ces alarmes sont ensuite traitées par le module de localisation 
(algorithme de hitting set) qui élabore une liste de composants physiques, suspectés être défaillants. Finalement, 
la connaissance des experts sur ces composants est automatiquement traitée par le module d’identification qui 
génère  un message envoyé à l’opérateur. Ce message décrit la défaillance, les actions à entreprendre pour 
maintenir l’opération ou pour la maintenance à effectuer, et les répercussions de la défaillance sur le procédé. 
Les résultats obtenus sont illustrés sur 4 scénarios réels de mauvais comportement. Ce travail a été mené dans le 
cadre du projet Européen CHEM. 

NOMENCLATURE 
CMS: Causal Model Structure 
FCC: Fluid Catalytic Cracking 
FDI: Fault Detection and Isolation 
SCADA: System of Control And Data Acquisition 
SRM : structural relation model 
 

INTRODUCTION 

Nowadays, process supervision is mainly performed by operators. The process is usually controlled with a 
SCADA involving an operator interface and an automatic shut down emergency system. Due to the increasing 
size and complexity of processes, the understanding of faults and their propagation becomes more and more 
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difficult. Therefore, it is essential to develop new computer tools that are able to detect faults, to isolate damaged 
equipment and to decide on accommodation and reconfiguration control strategies to deal with altered situations 
(Iserman and Ballé, 1997; Trave and Gentil, 1999; Blanke et al., 2003). As the aim of these tools is to help 
operators in their daily decisions, they must be designed with the scope of human-machine cooperation. 

A Fluid Catalytic Cracking (FCC) unit is a refinery process which receives multiple feeds consisting of low 
value, high boiling point feedstocks. The FCC cracks these streams into valuable components such as gasoline 
and diesel. The FCC is extremely efficient with only about 5% of the feed used as fuel in the process.  

Fluid catalytic cracking continues to play a key role in an integrated refinery as the primary conversion process. 
For many refiners, the cat cracker is the key to profitability in that the successful operation of the unit determines 
whether or not the refiner can remain competitive in today's market. Approximately 350 cat crackers are 
operating worldwide, with a total processing capacity of over 12,7 million barrels per day (Raider and Mari, 
1996). 

For this process, reliability is required to allow long-term operation between maintenance shutdowns (every 3-5 
years typically). As much as 4000 t/h of hot catalyst is transported in the FCC system at up to 20-30 m/s, thereby 
requiring a robust process and mechanical design. Good unit operation and performance must be achieved to 
justify the refiner’s investment and to minimise short payout times imposed by business aspects. Diagnostic tools 
must then be developed in order to improve the reliability and to prevent from shutdowns. 

Normal operating condition models are now commonly used for fault detection (Frank and Ding 2000). 
However, for complicated processes, obtaining such a model may be tricky. Two types of models are generally 
developed for industrial plants:  

1. material or energy balances established from process block diagrams and flowsheets that integrate operator 
knowledge of production rules. They are written from a production management standpoint and thus 
implement shop-scales balances.  

2. complex, partial derivative non-linear analytical equations that are written by physicists. They are developed 
to obtain load diagrams or to build training simulators. They are not often available for real processes. 

These two kinds of models are conceived for purposes other than supervision. Classic FDI (Fault Detection and 
Isolation) used in automatic control - generalised parity space, dedicated observers scheme or parameter 
estimation (Frank, 1990, 1991; Patton and Chen, 1991; Isermann, 1993) - are poorly suited to this type of 
representation. Classic diagnostic techniques for industrial processes are generally based on state variable 
representation and thus are not adapted to the supervision of a complete facility because of their constraining 
formalism and global analytical processing. 

Moreover, keeping in mind that the objective of the model is diagnosis, specific modelling methods must be 
applied. It is commonly accepted that humans often refer to causal mental models for supporting explanation 
tasks and diagnosis (Rasmussen, 1993). An advantage of causal diagnostic computer tools to support human 
based supervision is their intrinsic explanatory capacity (Evsukoff et al., 2000) related to the match of the model 
with human mental representation structures. The causal model captures the influences between the variables of 
a process and supports qualitative and quantitative knowledge that can be interpreted by a diagnostic module. In 
particular, each influence is labelled in terms of physical component(s) of the process, which establishes a link 
between behavioural knowledge and hardware (Travé-Massuyès et al., 2001).  

In the area of automatic control, change/fault detection and isolation problems are known as model-based FDI. 
Relying on an explicit model of the monitored plant, all model-based FDI methods (and many of the statistical 
diagnostic methods) require two steps. The first step generates inconsistencies between the actual and expected 
behaviour. Such inconsistencies, also called residuals, are ‘artificial signals’ reflecting the potential faults of the 
system. The second step chooses a decision rule for diagnosis. The check for inconsistency needs some form of 
redundancy. There are two types of redundancies, hardware redundancy and analytical redundancy. The former 
requires redundant sensors. It has been utilised in the control of such safety-critical systems as aircraft space 
vehicles and nuclear power plants. However, its applicability is limited due to the extra cost and additional space 
required. On the other hand, analytical redundancy (also termed functional, inherent or artificial redundancy) is 
achieved from the functional dependence among the process variables and is usually provided by a set of 
algebraic or temporal relationships among the states, inputs and outputs of the system. The essence of analytical 



 

redundancy in fault diagnosis is to check the actual system behaviour against the system model for consistency. 
Any inconsistency expressed as residuals, can be used for detection and isolation purposes. The residuals should 
be close to zero when no fault occurs but show ‘significant’ values when the underlying system changes. The 
generation of the diagnostic residuals requires an explicit mathematical model of the system. 

This paper presents a method which relies on analytical redundancy in order to detect, isolate and identify faults 
in a FCC pilot plant. This case study is chosen to evaluate the practical feasibility of the approach in terms of 
speed, accuracy, and computational complexity not only because it is a highly nonlinear, strongly coupled, 
multivariable system but also because it has a significant economic impact.  

Our method uses four successive complementary techniques (Cauvin and Celse, 2004a, Cauvin and Celse, 
2004b). They enable to go step by step from the observations to a sentence in natural language describing the 
faults: 

• Modelling: A quantitative causal model is elaborated from a dynamic behavioural model of the process. 
This model can be used around one steady state. It describes quantitatively the influences among process 
variables. A possible representation of a causal model is a causal graph made of nodes and directed arcs. 
Nodes represent variables and arcs represent influences among variables. The information carried by the 
arcs is quantitative: gains for a static representation or transfer functions to take time into consideration 
(Leyval et al., 1994), (Travé-Massuyès et al., 2001).  

• Detection: The model is used to calculate two references: given a variable x that influences a variable y, 
values for y can be generated either based on a model value for x (global reference) or based on a measured 
value for x (local reference). Values are propagated from node to node easily. The global reference indicates 
the consistency of the variables regarding exogenous variables (set-points, disturbances…). The local 
reference indicates the coherency regarding a local environment. Comparing measures with these references, 
the fault detection module determines whether measured variables have an abnormal behaviour or not 
(analytical redundancy). Alarms are generated using fuzzy logic. 

• Isolation: The set of components associated to edges connected to variables which have an abnormal 
behaviour, known as conflicts, are interlined to determine the subsets of physical components that behave 
abnormally, i.e. the diagnoses. 

• Identification: Each component is associated with semi-qualitative models of its abnormal behaviour 
obtained from the operator expert knowledge and expressed in the form of a fault/symptom tree. When a 
component is suspected by the isolation module, its fault/symptom tree is activated, symptoms are qualified 
by a signal analysis, faults and possible actions are identified and suggested to the operators. 

The paper is organised as follows. 

• Section 1 presents the causal modelling approach.  

• Section 2 details the diagnostic module. It can be divided into three sub-modules for fault detection, 
isolation and identification. 

• Section 3 presents several scenarios obtained with the FCC pilot plant. 

1. Causal modelling  

The aim of this section is to present how to obtain the quantitative causal graph. This model will be used in order 
to calculate references for the process which will be used by the detection module (cf. 2.1). 



1.1 Description of the modelling approaches  

1.1.1 Principles 

The basic structure underlying a causal model is a directed graph1, named the causal graph. The causal graph is 
made up of a set of nodes V and a set of directed arcs I. Nodes represent variables and arcs represent influences 
among the variables.  

Graphs are a powerful mathematical tool (Murota, 1991) and have been used since the eighties to represent 
physical system properties. State-space representations of linear structured systems, for instance, can be easily 
transformed into a graph. The classical system properties, useful for control, such as controllability, finite and 
infinite zero structure, disturbance rejection and so on, can be expressed in graph theoretic terms. The most 
important results are summarised in the recent survey paper (Dion et al., 2003). In these control approaches, the 
state-space representation of the system is given, and the graph is generated easily: nodes correspond to state 
variables and edges are associated to the non zero parameters in the state and input matrices. 

The problem which is solved in this paper is different since the model of the system is not assumed to be 
structured as a state-space representation. This work consists precisely in finding the model’s structure from the 
set of non ordered relations, and expressing it as a graph. Even though the model’s structure is intended to be 
used for diagnostic purposes, the model that we consider represents the normal behaviour. The relations thus 
describe the normal operating behaviour of the components. Qualitative digraphs have been used first by Kramer 
and Palowitch (1987) and after that by other authors (see for instance Maurya et al., 2003 for a recent work) for 
fault detection. The arcs contain knowledge about the signs of the influences, from which propagation of faults is 
deduced (too high or too low variables’ values). This approach was extended to batch processes. Here, the model 
is dynamic and quantitative.  

There are various types of knowledge sources that can be used to obtain a causal graph for a given process. The 
first is the empirical knowledge of operators and experts of the process behaviour. This type of knowledge is 
difficult to extract and to formalise (Heim et al., 2001; Leyval et al., 1994). It is subjective, as it is related to the 
experts’ point of view. It is difficult to guarantee its completeness. The second is related to the description of the 
process by a set of differential-algebraic equations that define its behaviour. Using these equations, the causal 
graph is generated automatically (Travé-Massuyès and Pons, 1997) (Travé-Massuyès and Dague, 2003). 
Obtaining this kind of knowledge involves all the difficulty of physical modelling and needs further processing 
to generate the causal graph. This point is developed in this section. 

1.1.2 Generation of the Causal graph 

In this paper, the causal ordering framework of Iwasaki and Simon (1986) later extended within a graph theoretic 
framework (Porte et al., 1988) and in (Trave and Pons, 1997) for multiple mode systems has been adopted, due 
to its practical feasibility. This approach makes the most of its advantage by operating from the equations 
structure, hence only requiring a structural relation model (SRM) as initial knowledge  

In the causal graph, a set of influences from variables vi, …, vn to variable y mean that a relationship r(vi, …, vn, 
y) exists between these variables and that this relationship is expressed in such a way that y is computed from vi, 
…, vn values. A causal model can contain further qualitative and quantitative information. In the proposed 
approach, each influence is labelled with the physical components that underlie the relationship, called the 
influence/relation support (Cordier et al., 2000). This provides the causal model structure.  

The three following properties are commonly accepted to characterise causality: necessity (effects have unique 
causes), locality (the effect is structurally close from the cause), temporality (the cause precedes the effect). 
Consequently, causality appears naturally in differential or difference equations in canonical form (Travé-

Massuyès and Dague, 2003), i.e. ),...,( 1
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variable V influences a variable Y with a delay d, then Y is causally dependent on V. The difficulty comes from 
the algebraic equations that can give rise to algebraic loops and lead to non deterministic causal ordering.  

Providing a full presentation of the theory is not the intention of this section, but rather explaining the different 
steps of the method using the following example.  

Let’s consider a set of equations E, of variables V. A variable is exogenous to a system Σ if it cannot be 
described with the help of the other variables of Σ. A variable that is not exogenous is endogenous and belongs 
to the set endoV  
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These equations constitute the Structural Relation Model (SRM). Five steps are necessary to produce the Causal 
Model Structure CMS from the previously obtained structural relation model (SRM). They are illustrated on the 
previous example by Figure 1. 

 
Figure 1: Bipartite and directed graphs.  

(a) Bi-partite graph,  

(b) Just-determined bipartite graph,  

(c) Edges of (b) belonging to the perfect matching,  

(d) Perfect-matching,  

(e) Directed graph  

The first step consists in generating a preliminary bipartite graph. A bipartite graph is an undirected graph in 
which nodes can be divided into two sets such that no edge connects nodes within the same set. Here, the two 
sets are the set of equations E and the set of variables V. The bipartite graph ( , )= ∪G V E A  is hence defined, 
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in which a non-directed-edge  between and  exists if, and only if, the variable  is involved in 

equation :  (Figure 1-a). 
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The objective is then to determine for each equation  which variable is causally dependent on the other 

variables involved in . This means that for instance an equation such that e
je

je j(V1,V2,V3) is rearranged as 
following equation: 

2 1 3( , ...)V g V V=  

In this case, the variables on the right side V1 and V3 are the direct causes of the variable on the left side V2, 
which can also be interpreted as : V2’s values can be computed from V1 and V3 values. 

Causal ordering requires first of all to specify the exogenous variables of the SRM and moreover, it requires the 
SRM to be non degenerated, i.e. nE=nV and self-contained. A system of n algebraic equations is self-contained if 
any proper subset of k (k≤n) involves at least k variables. This notion can be compared to the definition of a just 
determined system that was introduced in (Cassar and Staroswiecki, 1997). This constraint can be understood as 
determining the number of endogenous variables that can be computed with the model. In practice, this can be 
used to draw the limits of the system and its environment, which means that some variables need to be 
considered as exogenous even if they are not so in reality. These variables are referred to as pseudo-exogenous 
variables in the following. They constitute the set . This is an important point for a practical 
application. More than one causal graph can be built for the same SRM depending on the choice of the pseudo-
exogenous variables. If the system is not self contained, the model has to be modified. Unger et al. (1995) gives 
a structural method to obtain a feasible model from a set of Differential Algebraic Equation (DAE). 

pseudo.exoV

For each exogenous or pseudo-exogenous variable in exoV  and , pseudo.exoV E  must be increased with a so-called 
exogenous equation which affects a constant value to the variable, meaning that this variable is controlled by the 
system’s environment. In the example, ( ) ( )47 =≠= EV nn . For real applications, practical considerations guide 
the choice of pseudo-exogenous variables. In our example, V5 is chosen arbitrarily as a pseudo-exogenous 
variable. This choice has no consequence on the methodology further developed. E  is increased by 3 
exogenous equations relative to variables  to obtain a just-determined bipartite graph G1 2 5, ,V V V j (see Figure 1-

b). The results presented in Figure 2 are obtained when  (Or V735 ,, VVV 4 and V6)are chosen as pseudo-
exogenous variables, respectively.  

Causal ordering results from determining a perfect matching in Gj. The perfect matching in a bipartite graph is a 
set of edges such that each edge is connected to only one node of each set of the bipartite graph and each node is 
connected to only one edge.  

In the just determined bipartite graph (Figure 1-b), some edges obviously belong to the perfect matching. For 
instance when an equation involves only one variable (this is the case for instance of the pseudo-exogenous 
equations) and when a variable is involved in only one equation (case of variable V7) (Figure 1-c). This is also 
the case of dynamic relations, since their causal interpretation is predefined, as mentioned above. 

If the equation set E does not contain any algebraic loop, then the perfect matching is unique. On the contrary, 
several perfect matching exist, which will result in the different causal interpretations around the loops. In the 
previous example, considering ,  and  as exogenous variables, thus  matches  or . Considering 

, is a pseudo-exogenous variable, thus  matches  or . Considering ,  matches  or . 
1e 1V 2V 1e 3V 6V

2e 5V 2e 3V 4V 3e 3e 4V 6V

Consequently, two solutions are available. If  is matched to , then  is matched to  and  to . If  
is matched to  then  is matched to  and  to . If e

1e 6V 3e 4V 2e 3V 1e

3V 2e 4V 3e 6V 1 is matched to V6 and e2 to V4 then no perfect 
matching can be found. Figure 1-d is an example of perfect matching. The Ford and Fulkerson algorithm can be 
used to determine the perfect matching (Ford and Felkurson, 1956).  

A directed graph G’ is derived from the perfect matching in G . The edges belonging to the perfect matching are 
directed from E to V. The other edges are directed from V to E (Figure 1–e). 



 

)The causal graph  is derived from the directed graph G( IVGc ,= '  by aggregating the matched nodes. The 
causal graph that corresponds to Figure 1-e is shown in Figure 2 case n°1. Other admissible causal graphs are 
given in Figure 2, cases 2 to 7 (depending on the choice of pseudo-exogenous variables). 

 
Figure 2: Causal graph possibilities. Different cases depending on the choice of exogenous variables 

1.1.3 Suppression of unmeasured variables 

It often happens that it is impossible to quantify each influence of the causal graph. In such cases, the only 
solution is to resort to identification methods to determine the differential or difference relationship, which is 
only possible if data are available for the variables. But the causal model structure contains known variables 
(measured variables, controller set-points, etc.) as well as unknown variables. This is why a reduction operation 
is used. It consists of eliminating unknown variables, keeping influence of physical components. It provides the 
reduced causal model (Heim, 2003). This procedure is similar to elimination theory (Staroswiecki et al., 1997).  

1.1.4 Suppression of negligible variables 

There may have some physical phenomena represented by influence relations that are negligible with respect to 
others, given the model objectives. The approximation operation accounts for such situations and results in an 
approximated causal model that contains only known process variables connected by quantified relations (Heim, 
2003). These relations are transfer functions of first or second order in the FCC case.  

1.1.5 Simulation of the model  

For simulation purposes, the process is assumed linear around one steady state. For example (cf. Figure 3), let: 

Y be an endogenous variable  
Ui be variables which influence Y. 
Fj  be the transfer function between Uj and Y. 



 
Figure 3: Transfer functions associated with a causal graph 

The value of Y is described with the discrete transfer functions Fj: 

( ) ( )
( ) nj
zA
zB

zF j
j ..1, ==  

From this equation, a difference equation is easily deduced, with Y°: value of Y in the steady state and q-1: the 
shift operator: 
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This quantitative causal graph can then be used as a simulator around the steady state. 

1.2 Example of industrial application 

This methodology is applied on the sub-system illustrated by Figure 4. It is the stripper and the regulated valve 
of the catalyst of an FCC. The aim of the valve is to regulate the catalyst level in the stripper. 

This system has only one configuration in normal behaviour. 
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Figure 4: Example: Subsection of the FCC pilot plant  

The variables used to describe the Stripper are found in Table 1. 

Variable Meaning Unit Sensor 

 



M_cata_stripper Catalyst mass in the stripper kg - 
P_fond_stripper Pressure in the bottom of the stripper Pa - 

P_stripper Sky pressure in the stripper Pa PT20 
Qe_cata_stripper Mass catalyst flow in the input of the striper kg/s - 
Qs_cata_stripper Mass catalyst flow in the output of the striper kg/s - 
L_cata_stripper Catalyst level in the striper  m LT20 

ρ_cata Catalyst density kg/m3  
Table 1 : Variables describing the stripper 

The variables used to describe the valve are found in Table 2. 

Variable Meaning Unit Sensor
DP_vanne_cata Pressure drop in the valve Pa DPT24 
LV_vanne_cata Aperture of the valve % LV20 
P_fond_stripper Pressure in he bottom of the stripper Pa - 
P_reg1 Sky pressure in the first regenerator Pa PT30 
Qe_cata_vanne Mass catalyst flow in the input of the valve kg/s - 
Qs_cata_vanne Mass catalyst flow in the output of the valve Kg/s - 
Cons_L_stripper Set point of the level of the stripper  M LT20 

Table 2: Variables describing the valve 

The following equations describe both systems. 

a1:  perfond_stripstripperstripper PP∆P −=

a2: 
cata

stripperS
ρ

*ML percata_strippercata_strip =  

a3:  percata_stripcata L*g*ρ∆P
stripper

=

a4: 
dt

dM
QQ percata_strip

ipperE_cata_stripperS_cata_str +=  

a5:  ipperS_cata_strneE_cata_van QQ =

a6: vanne_catavanne3neS_cata_van DP*)LV(f=Q  

a7:  neE_cata_vanneS_cata_van QQ =

a8:  reg1perfond_stripvanne_cata PP∆P −=

a9:  )(FLV __4vanne_cata strippercatastripperL LCons −=

with: 

• Sstripper section in the stripper 

• f3 : non linear function 

• F4 : transfer function 

 

The following physical components are associated to each equations. 

Equation Components 
a1 Stripper pressure sensor: PT20 
a2 Stripper level sensor: LT20 
a3 Stripper level sensor: LT20 
a4 Stripper 
a5 Stripper, valve 
a6 valve, pressure drop sensor in the valve: DPT24 

 



a7 valve 
a8 pressure drop sensor in the valve: DPT24, pressure sensor in the stripper: PT30 
a9 Controller of the valve 

Table 3: Association of physical components to each equation 

The causal graph in Figure 5 is obtained (variables in a rectangle (for example Qe_cata_stripper) are exogenous 
variables, variables in an ellipse (for example DP_stripper) are endogenous variables, measured variables (for 
example L_cata_stripper) are in bold, non measured variables (for example DP_stripper) are in white): 

 
Figure 5 : Causal graph obtained for the system presented in Figure 4 

Non measured variables are then suppressed (cf. 1.1.3) except exogenous variables. The causal graph in Figure 6 
is then obtained : 

 
Figure 6: Causal graph without non measured variables 

The following components are associated to each influence: 

• {Qe_cata_stripper → L_cata_stripper}={Stripper, Stripper level sensor: LT20} 

• {Cons_L_stripper → LV_vanne_cata}={Controller of the valve } 

 



 

                                                          

• {L_cata_stripper → LV_vanne_cata}={Controller of the valve } 

• {L_cata_stripper → DP_vanne_cata}={Stripper level sensor: LT20, Stripper pressure sensor: PT20, 
pressure drop sensor in the valve: DPT24, pressure sensor in the stripper: PT30} 

• {P_reg1 → DP_vanne_cata}={pressure drop sensor in the valve: DPT24, pressure sensor in the stripper: 
PT30} 

• {P_stripper → DP_vanne_cata}={Stripper pressure sensor: PT20, pressure drop sensor in the valve: DPT24, 
pressure sensor in the stripper: PT30} 

• {LV_vanne_cata → Qs_cata_stripper}={valve, pressure drop sensor in the valve: DPT24, Stripper } 

• {DP_vanne_cata → Qs_cata_stripper}={valve, pressure drop sensor in the valve: DPT24, Stripper } 

• {Qs_cata_stripper → L_cata_stripper}={Stripper, Stripper level sensor: LT20} 

1.3 Practical issues 

The causal ordering algorithm needs choices to be made by an expert: 

• some endogenous variables have to be considered as pseudo-exogenous (in the case where the number of 
equations is less than the number of endogenous variables); 

• if there are algebraic loops, a choice has to be made referring to the causal interpretation around the loops. 

The presence of pseudo-exogenous variables is due to the lack of formal relations for describing the process. 
This means that the causality driven simulation is guided by the measurements of these variables, which cannot 
be computed otherwise. Thus a first constraint is that pseudo-exogenous variables are measured variables. 
Further, in practice, the choice of a pseudo-exogenous variables is guided by: 

• The different time scale dynamics of the variables. As we cannot detect fault on these variables, for safety 
reasons, it is better to chose variables with slow dynamics.  

• The confidence in each sensor. It is better to chose pseudo-exogenous variables with robust sensor. If 
pseudo-exogenous error measures are very high, each threshold on father nodes will be high. The detection 
method will then be less sensitive. 

• The choice of the pseudo-exogenous variables may influence the presence or the absence of loops in the 
quantitative causal graph. In our methods, loops (system of n algebraic equations with n measured variables 
without delays) are redhibitory for causal simulation, so are loops with less than two measured variables for 
local causal simulation2. Pseudo-exogenous variables can be used to avoid such situations.  

In the application to a FCC pilot plant, the choices were made using the two first guidelines (variables with slow 
time dynamics and sensitivity of each relation). The influence of the pseudo exogenous choices to the presence 
or not of loops or more generally to the sensitivity of the fault detection method is not studied yet. 

2. Diagnostic methodology 

This section presents a method for managing residuals based on the causal graph generated in the previous step.  

First the detection module (section 2.1) generates alarms. The causal graph provides references characterising 
the normal behaviour of the process. Comparing measures with these references, the fault detection module 
determines whether measured variables have an abnormal behaviour or not (analytical redundancy), and 
generates alarms.  

 

2 When a loop includes two measured variables, the measured value of one can be used to predict the value of 
the other. 



For each variable, the fault detection module generates two references considering a local environment and a 
global one (given by exogenous variables). This is important for detection of incipient faults and for safety 
which absolutely requires to check critical variables in regards to their set points. 

Additionally, each influence of the causal model is associated with a set of physical components. The isolation 
module (section 2.2) applies a hitting set algorithm on the list of components associated to edges connected to 
variables which have an abnormal behaviour. This allows determining a subset of physical components that 
behave abnormally, the diagnoses.  

Finally, the fault identification module (section 2.3) generates more information and provides a final message to 
the operator. Each component is associated with semi-qualitative models of its abnormal behaviour. These 
models are obtained from the operator expert knowledge and expressed in the form of a fault/symptom tree. 
When a component is suspected by the isolation module, its fault/symptom tree is activated. Symptoms are 
qualified by a signal analysis, faults and possible actions are identified and suggested to the operators.  

2.1 Fault detection  

The aim of this module is to determine if the state of each variable is correct or not. Let yi(t) represent the 
measured value of each node of the causal graph. The causal model provides a global reference yi(t)* and a local 
one . Thanks to these values, two residuals are defined. )(ˆ tyi

ρ(t) = yi(t) - yi(t)* = εi : global residual 

λ(t) = yi(t) - = ε)(ˆ tyi
p

i : local residual 

The causal diagnostic methodology consists in deciding for each node if the fault is local (and thus explains all 
the other observed discrepancies) or if the fault is upstream (and thus explained by the fault on another variable). 

2.1.1 Global residual 

A global residual is the difference between measures and references calculated from the global reference of 
father nodes. It indicates the consistency of a measure regarding exogenous variables. Let Y be a variable and Uj 
the variables which influence Y (cf. Figure 3). The global reference of Y is calculated by: 

0 (..., ,...)global global
jY Y f U= +  (where Uj

global stand for the global reference of Uj) 

This global reference is computed from exogenous variables acting on the process (nominal value). The 
simulator outputs are compared with the process sensor outputs. The global residual alone allows only detection: 
it is clear that εi is excited either by a local discrepancy or by a discrepancy in an upstream variable Uj. Using 
this residual, it is then not possible to isolate the fault (Montmain and Gentil 2000). 

2.1.2 Local residual 

A local residual is the difference between measures and references calculated from the measures of father nodes 
(using the same transfer function as global residual). It indicates the coherency of the measure regarding a local 
environment. The local reference is calculated by: 

0 (..., ,...)local mes
jY Y f U= + (where Uj

mes stand for the measure of Uj) 

In this equation, the simulated evaluation of Uj has been replaced by its measured evolution to obtain the 
predicted evolution. The predicted value represents the value computed from the measured values of the 
antecedent nodes. As Um

j stands for the measure of Uj, this residual is only affected by the fault on the 
components related to the entering arcs in Y or to Y and Uj sensors. It enables local reasoning (i.e. cutting the 
influence of propagated faults). It enables to focus on relations that have be shown to be sufficient to allow fault 
isolation (Gentil et al., 2004). This avoids the combinatorial explosion that could be feared when dealing with 
industrial plants.  

 



2.1.3 Alarm generation 

The results of the Boolean reasoning on the residuals (global and local ones) are shown in Table 4. The number 1 
symbolises that the value of the residual is greater than a threshold and 0 that the residual is smaller than this 
threshold.  

 

λi(t) ρi(t) Fault 
1 0 Local 
0 1 Upstream 

Table 4: Boolean reasoning on residuals 

Table 4 could be used for process diagnosis, but using Boolean reasoning implies choosing very carefully the 
thresholds. Moreover, in case of a drift fault, there is a delay between the fault appearance and its detection. The 
operator is informed of the fault after its value is higher than the threshold. A way to cope with this problem is to 
use a fuzzy reasoning approach. The fuzzy approach described in this paper uses inferences extracted from Table 
4 to analyse the residuals. Moreover, the residual variations are used in order to take into account residual 
tendencies In order to take into account the measurement noise, memberships of past residuals and their 
variations to respective labels are computed (Evsukoff et al. 2000). 

Five fuzzy sets are used to describe the residual values (Figure 7). The linguistic labels of these sets are the usual 
ones: negative high NN, negative medium N, zero Z, positive medium P, positive high PP. 

Three fuzzy sets (N*, Z* and P*) are used to describe the variation of residual (Figure 8).  

 
Figure 7: Fuzzy partition of residuals 

 
Figure 8: Fuzzy partition of variation of residuals 

 

The fuzzy sets form 15 combinations (Table 5). The linguistic label OK means that the situation is normal and AL 
that the situation is abnormal (alarm). Symbolic fuzzy sets are used to express the meaning of these labels. µ/label 
expresses a membership of value µ to the label. Obviously AL and OK are complementary. For instance, if the 
residual is positive medium with a negative variation, this means that it is decreasing, so the situation is not so bad 
(0.6/OK). On the other hand, for positive variations, the situation is bad and worsening (1.0/AL). A similar table is 
based on λ(t)  in order to isolate the faults, with a symbolic reasoning concluding that the fault is local to a variable 
(LO) or upstream (UP) in the graph. For instance, if the residual λ(t) is medium positive with a positive variation, 
this means that it is increasing, there is a local fault that is increasing (0.8/LO) and (0.2/UP). 

 

   derivative 
  N* Z* P* 
   NN    0/OK 

   1/AL 
   0/OK 
   1/AL 

  0.2/OK  
  0.8/AL 

    N    0/OK 
   1/AL 

   0.4/OK
   0.6/AL

   0.6/OK  
   0.4/AL 

residual   Z    0.8/OK    1/OK    0.8/OK 

 



 

   0.2 AL    0/AL    0.2 AL 
    P    0.6/OK

   0.4/AL
   0.4/OK
   0.6/AL

   0/OK 
   1/AL 

   PP    0.2/OK
   0.8/AL

   0/OK 
   1/AL 

   0/OK 
   1/AL 

Table 5: Detection decision table for ρ 

 

   derivative 
  N* Z* P* 
   NN    0/UP 

   1/ LO 
   0/ UP 
   1/ LO 

  0.2/ UP 
  0.8/ LO 

    N    0/ UP 
   1/ LO 

   0.4/ UP
   0.6/ LO

   0.6/ UP 
   0.4/ LO 

residual   Z    0.8/ UP
   0.2 LO

   1/ UP 
   0/ LO 

   0.8/ UP 
   0.2 LO 

    P    0.6/ UP
   0.4/ LO

   0.4/ UP
   0.6/ LO

   0/ UP 
   1/ LO 

   PP    0.2/ UP
   0.8/ LO

   0/ UP 
   1/ LO 

   0/ UP 
   1/LO 

Table 6: Detection decision table for λ 

Fuzzy reasoning provides three membership functions between 0 and 1. The first function informs about the state 
of the variable, OK/AL. The gradual evolution between 0 and 1 characterises the evolution of the variable from a 
normal state to an undesirable one (detection). This transition is used in the supervision interface representing the 
causal graph for the operators- in terms of a colour code. The value that characterises the state of the variable is 
used to colour the contour of the nodes. The contour of the node is red when a fault is surely detected (µ/AL=1) 
and green when not (µ/OK=1). In between, it evolves through yellow, orange... 

The average value of the two other membership functions informing on the localisation of the fault (LO/UP) is 
used to colour the arcs of the graph. The input arrows are green for a surely local fault and red for a surely 
upstream one.  

The use of transition colours shows that fuzzy logic is useful to follow the variable gradual evolutions. Moreover 
this approach is close to human thinking and is well adapted to real processes with model uncertainties and 
measurement imprecision. 

2.1.4 Application to the FCC pilot plant 

In the FCC application, the model that is used contains 29 components, 40 variables and 25 causal relations. It 
was derived from a larger model containing 323 variables and 282 causal relations following the methodology 
presented in section 1. 

The causal graph can be displayed on the operator interface and used as a visual tool for fault detection and 
isolation on variables as well as for explanation. A node is green when no discrepancy is detected (for example, 
pc30 in Figure 9) and red when a discrepancy is detected (for example PT20), arcs influencing a variable are red 
for a local fault (for example between PT20 and PC20) and green otherwise (for example between PC30 and 
PT30)(cf. Figure 9 where red arcs appear in bold and red nodes in grey circles). 

Figure 9 presents the causal graph which is used for development purposes. Figure 10: presents the alarms and 
synoptic which are given to operators. 



 
Figure 9: Example of the causal graph used in development 

 
Figure 10: Visualisation of alarms in the FCC synoptic 

2.2 Fault isolation on physical components 

Having detected a discrepancy between predictions and observations, the aim of the isolation process is to search 
for the original possible cause(s) and to elaborate of a list of potential diagnoses. A diagnosis is a minimal set of 
components for which the invalidation of the normal behaviour assumptions yields (SD, COMP, OBS) 
consistent, where  

• SD is a formal description of the system including assumptions of normal behaviour for the set COMP. 

 



• COMP: set of components. 

• OBS: set of observations. 

In the proposed approach, the causal graph acts as the SD and the influences attached to the edges are the 
elements of COMP.  

The diagnostic process is initiated as soon as a variable is isolated as being the source of the detected 
misbehaviour (deduced from the local residual). For this variable (i.e. a node in the causal graph), conflict 
generation procedure traces the causal graph, following the intuition that the influences which may be at the 
origin of the misbehaviour of variable X are those related to the edges entering into X (and only those ones).  

The diagnostic generation is based on generating the minimal hitting sets of the collection of conflicts generated 
by the above algorithm (Cordier et al. 2000) (a set S that has a non-empty intersection with every set in a 
collection of sets C is called a hitting set of C; if no element can be removed from S without violating the hitting 
set property, S is considered to be minimal). A diagnosis is hence a set of components such that its intersection 
with each conflict set is not empty. 

Different hypotheses referring to exoneration assumptions may be considered (Travé-Massuyès et al. 2001). 
Exoneration implies that a fault always manifests itself, which depends on the existence or absence of 
compensatory effects within the system as well as on the sensitivity of the fault detector. In the FCC application, 
practical considerations led us to assess that the exoneration assumption is valid for sensors. We assess that 
sensors are reliable components, i.e the sensors associated with the arcs directly influencing a non-misbehaving 
variable are considered to be normal.  

Figure 11 is an example of a list of components of the FCC pilot plant associated to a colour code. The following 
abbreviations are used:  

• C: Component;  

• ∪C: Union of conflicts;  

• ∩C: Intersection of conflicts;  

• FAM: Fault always manifested;  

• AWF: Arc without faults. 
Table 5 gives the algorithm computing the colour code. 

a) Initially all the components are represented by a green square  
b) IF C  THEN “external part of  square” = red  C∈∪
c) If FAM=True for the current component C 

 IF  THEN “internal part of  square” = green CC ∩∉
 IF  and  THEN  “internal part of  square” = red CC ∩∈ AWFC ∉

d) If FAM=False 
IF  THEN  “internal part of  square” = red CC ∩∈

e) (Multiples faults) 
IF   AND   THEN “internal part of  square” = orange CC ∩∉ C ∈∪C

Table 7: Colour code displayed in the squares in Figure 11 

The square colour ranges from red for incriminated single fault components to green for non incriminated 
components, and can be orange when the component can take part in a multiple fault. 

 



 
Figure 11: Visualisation of faulty and non-faulty components 

2.3 Fault identification 

Having estimated the list of physical components which have an abnormal behaviour, the aim of fault 
identification is to generate a message in natural language describing the particular fault on a suspected 
component to the operator. 

To complete this task, each physical component is associated with semi quantitative models of its abnormal 
behaviour. These models (Heim et al. 2001), obtained from human operator knowledge (Hazop analysis), take 
the form of AND/OR fault/symptom tree (cf. Figure 12). They are activated only when the component is 
suspected to have an abnormal behaviour.  

 

Figure 12: Semi/Quantitative abnormal model structure 

Symptoms take the form of signal analysis: increases , decreases , pulse & , oscillation , steps 
& .  

When there exists negligible and complicated phenomena that are not modelled with the causal model, the 
abnormal behaviour model allows refining the diagnosis concerning those phenomena. It gives also a list of 
actions in order to verify and to counteract the fault. 

Figure 13 is an example of an expert graph obtained for the stripper. It indicates that if the pressure stripper is 
low and the valve opening that regulates the pressure is 0%, then there is a leakage between the riser and 
stripper. In order to confirm this diagnosis, the operator has to verify that the pressure set-point is different from 
the measure. The repercussions are then defined. They depend on the type of regulation used (cascade 1 or 2). 

 



 
Figure 13: Riser expert graph 

3. Implementation 

This approach was implemented using Gensym’s G2 software. G2 allows object oriented and graphical 
programming of real time application. Causal graph nodes and directed arcs are represented by objects. Causal 
graph can easily be modified adding a node and connecting it with other nodes. Selecting any arc enables to 
change its transfer function parameters, and to modify its associated components list. In the fault/symptom tree 
associated to each physical component, symptoms and messages delivered to the operator are represented by 
objects. Relationships between symptoms and faults are symbolised by directed arcs. Parameters can be changed 
(variable identity, amplitude, frequency...) to change the sensitivity of the signal analysis. This allows to tune an 
application and to apply it to different processes or sites.  

4. FCC application 

4.1 FCC process 

FCC process includes many subsystems (two regenerators, a reactor, a separation column, pipes, valves...). The 
reactor riser temperature is very close to the metallurgical limits for optimum production. As a result of cracking, 
carbonaceous products (called coke) get deposited on the catalyst, which decreases the effectiveness and the 
lifetime of the expensive catalyst. This one is continuously regenerated in the regenerator by blowing in air. 
Coke is combusted to CO, CO2, and H2O. The amount of CO vented out through the stack gas is very crucial 
from an environment point of view, and one of the challenges for our application is not to violate the 
environmental threshold and to achieve an optimum performance in the face of disturbances. There is a constant 
flow of regenerated and spent catalyst between the reactor and the regenerator. This flow is partly driven by the 
pressure differential between the reactor and regenerator, and the remaining momentum is supplied by the lift air 
blower. The fractionator’s section separates the product hydrocarbons for further processing. A feed system 
consisting of low-level flow controllers and a preheating furnace pre-processes the feed for cracking. 

The FCC chosen is a pilot plant. Table 6 describes order of magnitudes of the physical variables in  a real FCC 
and  in a FCC pilot plant: 

 

Characteristics Industrial FCC FCC pilot plant 
Capacity 40000 barrels/day 2 barrels/day 
Regenerator long 15 m 1 m 
Regenerator diameter 8 m 20 cm 
Riser long 35 m 7 m 

 



 

Riser diameter 1 m 2 cm 
Feed flow 245 t/h 6 kg/h 
Catalyst flow 1500 t/h 40 kg/h 
Total mass of catalyst 300 tonnes 40 kg 
Contact time in the riser 2 à 4 sec 1 sec 
Contact time in the stripper 1 min 15 min 
Contact time in each regenerator riser 5 min 20 min 

Table 8: Differences between an industrial  FCC and the FCC pilot plant 

In the FCC pilot plant (Figure 14), the catalyst circulates in a physical closed loop: it goes from the stripper (R3), 
to the 1st regenerator (R1) then to the 2nd regenerator (R2) then to the riser (R1) and finally comes back to the 
stripper (R3). Catalyst circulation is ensured by pipes: the lift (T2) , the stand pipe (T3) and the riser (T1). Riser 
is also a reaction zone. The feed is put in contact (via V6) with the catalyst in the riser during few seconds and 
immediately catalyst and reaction products fall in the stripper. The stripper R3 separates valuable components 
and low boiling point molecules from the catalyst and the coke. Coke is a reaction secondary product composed 
of high boiling point molecules. Valuable components are separated from low boiling point molecules by a 
separation column (C1). A filter (F1) between the column and the stripper prevents catalyst from going in the 
separation column. The catalyst and the coke are driven to the first regenerator R1 through a valve V4. Coke is 
partially burnt in the first regenerator. The second regenerator R2 finishes this combustion. At the output of the 
second regenerator, the hot regenerated catalyst that is driven to the bottom of the riser rapidly reacts with the 
feed. Three pressure control valves V1, V2, V3 are used to control respectively the stripper, 1st regenerator and 
2nd regenerator pressures. Nitrogen flows are controlled to ensure the catalyst circulation (V7 to V12). Air flows 
are controlled to ensure the coke combustion (V13 and V14). Catalyst levels in stripper and separation column 
are controlled respectively by valves V4 and V5. Filters F2 and F3 respectively prevent catalyst from going into 
V2 and V3

Problems that occur in a industrial FCC are (Sadeghbeigi, 2000) : 

• Catalyst circulation 

• Catalyst loss 

• Coking/Fouling 

• Flow reversal 

• High regenerator Temperature 

• Afterburn 

• Hydrogen Blistering 

• Hot Gas Expander 

• Products Quality and Quantity 

Problems that occur on the FCC pilot process have been classified in 6 types:  

• Blockage (pipe, valve, ... , cf. scenario 1), 

• Leakage, 

• Change in the material properties (catalyst, ...). 

• Bad operation (operator, ... , cf. scenario 2), 

• Sensor faults (cf. scenario 3), 

• Utilities (gas, electricity, ..., cf. scenario 4), 



 

Figure 14: FCC pilot plant process variables 

4.2 Scenarios description 

This paragraph presents scenarios that happened on the FCC pilot plant. 

In the application, the assumption is made that a sensor fault always manifests (cf. 2.2). Therefore, in the 
following sections, sensors are exonerable components. 

Table 7 presents the detection time obtained using the presented method, named ASCO, with the one an operator 
would obtain (ASCO stands for : "Aide à la Supervision et à la Conduite pour les Opérateurs). Theses times are 
suggestive, and are obtained from historical data. 

• Column 1 describes the type of fault 

• Column 2 describes the failure 

• Column 3 gives the detection time for ASCO 

• Column 4 gives the detection time for an operator 

 

Faults Description Time for detection 
  ASCO Operator 

Blockage 1. Blockage of pipes between stripper and column 5 minutes 50 minutes 
 2. Blockage of valve on the first regenerator 5 minutes 15 minutes 
 8. Gas bubbles in the pump circuit  20 minutes 1 hour 
 5. Filters in the first regenerator 1 minute 15 minutes 
 6. Filters in the second regenerator blocked 1 minute 15 minutes 

Sensor faults 3. Abnormal level in the first regenerator 1 minute 20 minutes 
Operator faults 4. Bad operator actions creating disturbances in the process 1 minute 5 minutes 

 8. Gas bubbles in the pump circuit 1 minute 10 minutes 
 11. Gas present between the first and second regenerator 5 minutes 10 minutes 

Utilities 7. Lack of air to operates the regulation valves in two regenerators 5 minutes Not detected 
Process 9. Stand pipe drain 1 minute 10 minutes 

 10. Catalyst present between the striper and the separation-column  55 minutes 1 hour 
Wear 12. Abnormal behaviour of level regulation valve in the stripper  55 minutes 20 minutes 

Table 9: Time detection in practical scenarios 

 



The following sections present four scenarios of abnormal situation. 

4.2.1 Scenario #1 

This scenario corresponds to a blockage between stripper (R3) and separation column (C1). Catalyst is carried in 
this line by gas flow from Stripper (R3) toward the separation column (C1). Figure 15 shows influences provided 
by the causal graph in this scenario (without sensors). For example, RV3 component (controller of valve V3) is 
in the support (list of physical components) of influences SPS->OPPS and OPPS->PS. 

Faults are detected on variables PS (R3 pressure), OPPS (V1 opening value), DPR (Riser pressure drop), DPL 
(lift pressure drop), DPS (cocker pressure drop), FS (V1 effluent flow), LR2 (second regenerator level), LR1 
(first regenerator level), PC (Separation column sky pressure) , DPC (V4 pressure drop) and OPLS (V4 opening 
value) . These variables are grey in Figure 16.  

Faults are isolated on variables FS (V1 effluent flow) and PS (R3 pressure). Arcs influencing these variables 
appear in bold in Figure 16. 

SPS->OPPS
PS->OPPS
OPPS->PS
OPPS->FS

PS->FS
FS->∆PS
PS->PC

∆PS->PC
FNS->PS
FFR->PS
FNR->PS

RV3
V3
V5
F3
C1
R3
T1

Influences Components

 
Figure 15: Influences and their underlying components 

 

 

Figure 16: Causal graph in scenario 1 

 

Figure 17 presents global and local residuals of Stripper (R3) pressure: rPS(t) (left), λPS(t) (right). Figure 18 
presents global and local residuals of V4 pressure drop: rDPC(t) (left) and λDPC(t) (right). Thresholds aPS and aDPC 
are symbolised by horizontal lines. 
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Figure 17: rPS(t)

Figure 18: rDPC(t)an
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Figure 19: Expert graph activated for scenario #1 

V1, F1, C1 and V5 fault/symptom trees are made of several other rules but no other combination of symptoms is 
observed . Therefore, no other conclusion can be considered.  

Without any diagnostic module, operators may not detect the fault before security systems automatically halt the 
process, after 40 minutes. With the diagnostic module, the fault is isolated 5 minutes after its inception, allowing 
35 minutes for operators to act on the process.  

V1 is composed of two parallel valves V1a and V1b. If only one valve (V1a for instance) is blocked then 
operation can be maintained controlling PS (R3 pressure) only with V1b. The operator has time to change V1a. 

4.2.2 Scenario #2 

This scenario corresponds to the formation of bubble of gas in the feeding pump because the valve V6 
temperature, TV6, is too high. The variables directly affected are FFR (V6 feed flow) and OPFFR (V6 opening 
value). Faults are detected on {OPFFR, FFR, PS, OPPS, FS, DPS, PC, DPR, DPL, LR2, LR1}. Faults are 
isolated on {FFR,OPFFR}. Components associated with the arcs influencing FFR (V6 feed flow) define a 
conflict. This conflict is {V6, RV6, FNT, OPFFRt, FFRt}. Components associated with the arcs influencing 
OPFFR (V6 opening value) define a conflict. This conflict is {V6, RV6, FNT, OPFFRt}. Minimal diagnoses are 
{V6}, {RV6}, {FNT} and {OPFFR}. 

The operator is informed that sensor OPFFRt is suspected to be faulty. In fact this sensor is not faulty. Having 
more knowledge on sensors will enable to exonerate this sensor. Fault symptom trees of V6, RV6 and FNT are 
activated. The qualitative model associated with SC2 fault is given by. 

[(F1 ) or (F1 )] and [TV6>] 

(F1 ) and TV6> are observed making signal analysis. The qualitative rule (F1 ) and (TV6 >) is observed 
therefore this message is delivered: 

Message 2 : "Gas bubbles in the feeding pump V6. Stop feeding and wait until TV6 decreases". 

Temperature Tv6 is a variable that has not been introduced in the model but that is interpreted in the fault 
identification module. 

In this scenario, the only delivered message is Mess2. 

The time of abnormal behaviour occurrence is 50 minutes. 10 minutes are necessary to the operator to isolate the 
fault without the diagnostic module. The diagnostic module instantaneously generates the message. 

The operator has to stop feeding and to wait until TV6 decreases. Feed can then be reactivated. If the operator 
does not react rapidly enough the FCC pilot can go into a not permitted state that activates automatically security 
monitoring functions. 

 



4.2.3 Scenario #3 

This scenario corresponds to a fault on sensor LR1 (first regenerator level). The variable which is directly 
affected is LR1. A fault is detected and isolated on LR1. Components associated with the arcs influencing LR1 
are {T1, T2, T3, T4, R1, R2, R3, V4, LR1t, LR2t, LSt}. Therefore, conflicts are {T1}, {T2}, {T3}, {T4}, {R1}, 
{R2}, {R3}, {V4}, {LR1t}, {LR2t} and {LSt}.  

Sensor LR2t (second regenerator level) is not faulty because λ(LR2)=0. Sensor LSt is not faulty because 
λ(LS)=0. The operator is informed that sensor LR1t (first regenerator level) is suspected. 

Fault symptom tree of T1, T2, T3, T4, R1, R2, R3 and V4 are activated. The identification module does not 
deliver any message because the FCC behaves normally. 

The time of abnormal behaviour occurrence is approximately 40 minutes. 5 minutes are necessary for the 
operator to isolate the fault without the diagnostic module. Fault isolation is instantaneous with the diagnostic 
module. LR1 sensor (first regenerator level) is blocked with catalyst. The operator has to create a gas stream 
inside the sensor to repair it. 

4.2.4 Scenario #4 

This scenario corresponds to a decrease of the air network pressure. The variables directly affected are OPFOR1 
and OPFOR2. This network pressure is not transmitted to the diagnostic module. Faults are compensated by 
control loops (RV13 and RV14) and do not propagate in the causal graph. Faults are detected and isolated on 
OPFOR1 and OPFOR2.  

Conflicts are {RV13, V13, ONT, OPFOR1t} because λ(OPFOR1)> 0 and {RV14, V14, ONT, OPFOR2t} 
because λ(OPFOR2)> 0. A minimal diagnosis is {ONT}, so, ONT fault symptom tree is activated. Symptoms 
(OPPR1 <) and (OPPR2<) are observed. Therefore, the following message is delivered to the operator: 
"Decrease of the air pressure network. Check if this measure is low.". Symptom/trees associated to other 
diagnosis do not provide any other conclusion. 

The qualitative model associated with SC4 fault is 

[(OPPR1 ) or (OPPR1 <)] or [(OPPR2 ) and (OPPR2<)] 

(OPPR1 <) and (OPPR2<) are observed, therefore, the following message is therefore delivered to the operator:  

Mess4: "Decrease the air pressure network. Check if this measure is low." 

In this scenario, the only delivered message is Mess4. 

The time of abnormal behaviour occurrence is approximately 15 minutes. This fault was not detected by the 
operator because the gas flows were maintained at their set point. The diagnostic module generates the message 
3 minutes after the fault occurrence. Thanks to this information, the operator can engage actions on the air 
pressure network before its pressure is too low. 

5. Conclusion 

This paper presents a methodology to apply a diagnostic method to an industrial size process. The combination 
of complementary techniques (modelling, fault detection, fault isolation and fault identification) is used.  

Modelling is carried out using a causal model which describes the normal influences among process variables 
and supports qualitative and quantitative information. The initial knowledge consists in the process variables 
(endogenous and exogenous variables), and the set of formal relations, related to physical components, that 
describe the variables. This knowledge constitutes the structural relation model. The application of a causal 
ordering algorithm to the structural relation model provides the causal graph, which exhibits the causality 
underlying the set of relations in the form of a set of directed influences between variables. Other operations are 

 



 

further necessary, due to the practical difficulty in quantifying the relations involved in the causal graph with 
theoretical knowledge. Model identification and parameter estimation is generally used, which is only possible if 
data are available for the variables. A reduction operation consists in eliminating unknown variables from the 
graph. An approximation operation results in an approximated causal model that contains only known process 
variables connected by quantified relations. At this step the model is ready for causal simulation which is to say 
for computing the endogenous variables from the measured values of the exogenous ones. As the influences are 
associated to specific physical components, the approximated causal model is also suitable for supporting 
diagnosis, i.e. fault isolation.  

Fault detection is carried out using classical analytical redundancy. The quantitative causal model provides 
references characterising the normal behaviour of the process. Comparing measures with these references, the 
fault detection module determines whether measured variables have an abnormal behaviour or not, and generates 
alarms. For each variable, the fault detection module generates two references considering a local environment 
and a global one (given by process set points and measured external disturbances). This is important for 
detection of incipient faults and for safety which absolutely requires checking critical variables in regards to their 
set points. 

Isolation is carried out applying a hitting set algorithm on the list of components associated to edges connected 
to variables which have an abnormal behaviour. This allows determining a subset of physical components, the 
diagnoses, that behave abnormally.  

Identification is carried out generating more information and provides a final message to the operator. Each 
component is associated with semi-qualitative models of its abnormal behaviour obtained from the operator 
expert knowledge and expressed in the form of a fault/symptom tree. When a component is suspected by the 
isolation module, its fault/symptom tree is activated, symptoms are qualified by a signal analysis, faults and 
possible actions are identified and suggested to the operators.  

The methodology presented in the paper has been proven feasible on a FCC pilot plant. A FCC plays a key role 
in an integrated refinery as the primary conversion process. For this process, reliability is required to allow long-
term operation between maintenance shutdowns (every 3-5 years typically). The faults to be detected on the FCC 
pilot plant are leakages (on pipes, tanks, valves...), blockages (on pipes, actuators, injections...), abnormal 
process behaviour (wrong PID parameters, abnormal gas bubbles inside the process, empty tanks...), problems 
on sensors, regulators, and external services (such as electricity, gas network...). ASCO was tested off-line on 13 
scenarios containing faults and succeeded in identifying the faults a long time before the operators (10 minutes to 
an hour) with robustness. For doing so, it uses a model containing 29 components, 40 variables and 25 directed 
relations that was derived from a model containing 323 variables and 282 directed relations. The software always 
isolates the faults much faster than the operator. 
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